The existence of best proximity point for a pair of multivalued mappings

R.C.Dimri,Pushpendra Semwal

Abstract

Absrtact In this paper we establish a theorem on best proximity point for multivalued mappings satisfying the property-UC.Our result generalize and extend some of the results of Lin and Yang [5] and others. Key Words-Best proximity point,PropertyUC, MT-function,Cyclic map, Mulitivalued mapping.

\section*{Mathematical Subject Classification47H10,46B20.}

1. Introduction and Preliminaries

Let A and B be nonempty subsets of a metric space (X,d).Consider a mapping $T: A \cup B \rightarrow$ $A \cup B, \mathrm{~T}$ is called a cyclic map if $\mathrm{T}(\mathrm{A}) \subseteq B$ and $\mathrm{T}(\mathrm{B}) \subseteq A . x \in A$ is called a best proximity point of T in A if $d(x, T x)=d(A, B)$ is satisfied, where $\mathrm{d}(\mathrm{A}, \mathrm{B})=\inf \{d(x, y): x \in A, y \in B\}$. We denote by H the Hausdorff metrie $H(A, B)=\max \{$ sup $d(a, B): a \in A$, $\sup d(A, b): b \in B\}$ where $\mathrm{d}(\mathrm{a}$, B) $=\inf \{d(a, b): b \in B\}$. In 2005,Elderd et al.[1] proved the existence of a best proximity point for relatively nonexpansive mappings using the notion of proximal normal structure.In 2006,Eldred and Veeramani [2] proved the following existence theorem.

Definition 1.1. Let A and B be nonempty subsets of a metric space (X,d). The cyclic (on A and B) multivalued mapping T is said to be cyclic contraction if there exists a constant $k \in(0,1)$ such that

$$
H(T x, T y) \leq k d(x, y)+(1-k) d(A, B)
$$

for all $x \in A$ and $y \in B$

Theorem1.2[2]. Let A and B be nonempty closed convex subsets of a uniformaly convex Banach space.Suppose $f: A \cup B \rightarrow A \cup B$ is a cyclic contraction, that is, $f(A) \subseteq B$ and $f(B) \subseteq A$, and there exists $k \in(0,1)$ such that

$$
d(f x, f y) \leq k d(x, y)+(1-k) d(A, B)
$$

for every $x \in A, y \in B$
Then there exists a unique best proximity point in A. Further, for each $x \in A,\left\{f^{2 n} x\right\}$ converges to the best proximity point.

Definition1.3[3-4] A function $\phi:[0, \infty) \rightarrow[0,1)$ is said to be an MT- function (or R-function) if $\limsup _{s \rightarrow t^{+}} \phi(s)<1$ for all $t \in[0, \infty)$.
It is obvious that if $\phi:[0, \infty) \rightarrow[0,1)$ is a nondecreasing function or a nonincreasing function, then ϕ is an MT-function. So the set of MTfunctions is a quite rich class.
Very recently,Du [4] first proved some characterizations of MT-functions.

Example1.4[4] Let $\phi:[0 . \infty) \rightarrow[0,1)$ be defined by

$$
|x|=\left\{\begin{aligned}
\frac{\text { sint }}{t} ; & \text { if } t \in\left(0, \frac{\pi}{2}\right] \\
0 ; & \text { otherwise } .
\end{aligned}\right.
$$

since $\lim _{s \rightarrow 0^{+}} \sup \phi(s)=1, \phi$ is not an MT-function.
Theorem1.5[4] Let $\phi:[0, \infty) \rightarrow[0,1)$ be a function. Then the following statements are equivalent.
(a) ϕ is an MT-function.
(b) For each $t \in[0, \infty)$,there exist $r_{t}^{(1)} \in[0,1)$
and $\epsilon_{t}^{(1)}>0$ such that $\phi(s) \leq r_{t}^{(1)}$ for all $s \in$ $\left(t, t+\epsilon_{t}^{(1)}\right)$.
(c) For each $t \in[0, \infty)$, there exist $r_{t}^{(2)} \in[0,1)$ and $\epsilon_{t}^{(2)}>0$ such that $\phi(s) \leq r_{t}^{(2)}$, for all $s \in$ $\left[t, t+\epsilon_{t}^{(2)}\right]$.
(d) For each $t \in[0, \infty)$, there exist $r_{t}^{(3)} \in[0,1)$ and $\epsilon_{t}^{(3)}>0$ such that $\phi(s) \leq r_{t}^{(3)}$, for all $s \in$ $\left[t, t+\epsilon_{t}^{(3)}\right]$.
(e) For each $t \in[0, \infty)$, there exist $r_{t}^{(4)} \in[0,1)$ and $\epsilon_{t}^{(4)}>0$ such that $\phi(s) \leq r_{t}^{(4)}$ for all $s \in$ $\left(t, t+\epsilon_{t}^{(4)}\right)$.
(f) For any nonincreasing sequence $\left\{x_{n}\right\}_{n \in N}$ in $[0, \infty)$, we have $0 \leq \sup _{n \in N} \phi\left(x_{n}\right) \leq 1$.
(g) ϕ is a function of contractive factor ; that is , for any strictly decreasing sequence $\left\{x_{n}\right\}_{n \in N}$ $\operatorname{in}[0, \infty)$, we have $0 \leq \sup _{n \in N} \phi\left(x_{n}\right) \leq 1$.

Definition1.6[6] Let A and B be nonempty subsets of a metric space (X, d).Then (A, B) is said to satisfy the property UC if the following holds:
If $\left\{x_{n}\right\}$ and $\left\{x_{n}^{\prime}\right\}$ are sequences in A and $\left\{y_{n}\right\}$ is a sequence in B such that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=$ $d(A, B)$ and $\lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, y_{n}\right)=d(A, B)$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}^{\prime}\right)=d(A, B)$.

Lemma1.7[5] Let A and B be nonempty subsets of a metric space (X, d) with property UC and let $\left\{x_{n}\right\}$ be a sequence in A.If there exists a sequence $\left\{y_{n}\right\}$ in B such that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=d(A, B)$ and $\lim _{n \rightarrow \infty} d\left(x_{n+1}, y_{n}\right)=d(A, B)$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

2. Main Result

Theorem2.1 Let A and B be a nonempty subsets of a metric space (X, d) such that (A, B) satisfies the property UC and A is complete.Let F and G are two (on A and B) multivalued mappings such that $\mathrm{Fx} \subseteq B$, for all $x \in A$ and $\mathrm{Gy} \subseteq$ A, for all $y \in B$.If there exists a nondecreasing function $\mu:[0, \infty) \rightarrow[0,1)$ and an MT-function $\phi:[0, \infty) \rightarrow[0,1)$ such that
$H(F x, G y) \leq \frac{1}{2} \phi(\mu(d(x, y)))[d(x, F x)+d(y, G y)]+$

$$
\begin{equation*}
[1-\phi(\mu(d(x, y)))] d(A, B) \tag{1}
\end{equation*}
$$

for all $x \in A$ and $y \in B$, then F and G has comman best proximity point in A .

Proof. Fix $x_{0} \in A$.Let $x_{1} \in F x_{0} \subseteq B$. There exists $x_{2} \in G x_{1} \subseteq A$ such that

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq d\left(x_{1}, G x_{1}\right)+k \\
& \leq h\left(F x_{0}, G x_{1}\right)+k \\
& \leq H\left(F x_{0}, G x_{1}\right)+k \\
& \leq \frac{1}{2} \phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)\left[d\left(x_{0}, F x_{0}\right)+d\left(x_{1}, G x_{1}\right)\right]+ \\
& {\left[1-\phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)\right] d(A, B)+k } \\
& \leq \frac{1}{2} \phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right]+ \\
& {\left[1-\phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)\right] d(A, B)+k }
\end{aligned}
$$

which implies
$\left[1-\frac{1}{2} \phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)\right] d\left(x_{1}, x_{2}\right) \leq\left[1-\frac{1}{2} \phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)\right]$

$$
\begin{equation*}
d\left(x_{0}, x_{1}\right)+\left[1-\phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)\right] d(A, B)+k \tag{2}
\end{equation*}
$$

From (2), we obtain

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq \frac{\phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)}{2-\phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)} d\left(x_{0}, x_{1}\right)+ \\
& {\left[1-\frac{\phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)}{2-\phi\left(\mu\left(d\left(x_{0}, x_{1}\right)\right)\right)}\right] d(A, B)+k }
\end{aligned}
$$

From (1) again, we have

$$
\begin{aligned}
d\left(x_{2}, x_{3}\right) & =H\left(G x_{1}, F x_{2}\right)+k \\
& =H\left(F x_{2}, G x_{1}\right)+k \\
& \leq \frac{1}{2} \phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)\left[d\left(x_{2}, F x_{2}\right)+\right. \\
& \left.d\left(x_{1}, G x_{1}\right)\right]+\left[1-\phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)\right] \\
& d(A, B)+k \\
& =\frac{1}{2} \phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)\left[d\left(x_{2}, x_{3}\right)+d\left(x_{1}, x_{2}\right)\right] \\
& +\left[1-\phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)\right] d(A, B)+k
\end{aligned}
$$

which implies

$$
\begin{aligned}
& 1 \quad d\left(x_{n}, x_{n+1}\right) \leq \beta d\left(x_{n-1}, x_{n}\right)+(1-\beta) d(A, B)+k \\
& {\left[1-\frac{1}{2} \phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)\right] d\left(x_{2}, x_{3}\right) \leq\left[1-\frac{1}{2} \phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)\right] \quad \leq \beta^{2} d\left(x_{n-2}, x_{n-1}\right)+\left(1-\beta^{2}\right) d(A, B)+k^{2}} \\
& d\left(x_{1}, x_{2}\right)+ \\
& {\left[1-\phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)\right] \quad \leq \beta^{n} d\left(x_{0}, x_{1}\right)+\left(1-\beta^{n}\right) d(A, B)+k^{n}} \\
& d(A, B)+k \\
& \text { and hence } \\
& \text { Since } \beta \in[0,1) \text {, we have } \lim _{n \rightarrow \infty} \beta^{n}=0 \text {. So the } \\
& \text { last inequality implies }
\end{aligned}
$$

$$
\begin{aligned}
d\left(x_{2}, x_{3}\right) & \leq \frac{\phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)}{2-\phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)} d\left(x_{2}, x_{1}\right)+ \\
& {\left[1-\frac{\phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)}{2-\phi\left(\mu\left(d\left(x_{2}, x_{1}\right)\right)\right)}\right] d(A, B)+k }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=d(A, B)
$$

This implies

$$
\begin{gathered}
\lim _{n \rightarrow \infty} d\left(x_{2 n}, x_{2 n+1}\right)=d(A, B) \\
\lim _{n \rightarrow \infty} d\left(x_{2 n+2}, x_{2 n+1}\right)=d(A, B)
\end{gathered}
$$

$$
\begin{align*}
& d\left(x_{n}, x_{n+1}\right) \leq \frac{\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)}{2-\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)} d\left(x_{n-1}, x_{n}\right) \\
& \quad+\left[1-\frac{\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)}{2-\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)}\right] d(A, B)+k \tag{3}
\end{align*}
$$

Since ϕ is an MT-function, we obtain

$$
0 \leq \sup \phi\left(\mu\left(d\left(x_{n}, x_{n+1}\right)\right)\right)<1
$$

Let $\alpha=\sup \phi\left(\mu\left(d\left(x_{n}, x_{n+1}\right)\right)\right)$. So $0 \leq \alpha<1$. Since

$$
\begin{equation*}
\phi\left(\mu\left(d\left(x_{n}, x_{n+1}\right)\right)\right) \leq \alpha \tag{4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
2-\phi\left(\mu\left(d\left(x_{n}, x_{n+1}\right)\right)\right) \geq 2-\alpha, \text { for all } n \in N \tag{5}
\end{equation*}
$$

Therefore, by (4) and (5), we get

$$
\begin{equation*}
\frac{\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)}{2-\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)} \leq \frac{\alpha}{2-\alpha} \tag{6}
\end{equation*}
$$

From (6),

$$
0 \leq \sup \frac{\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)}{2-\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)} \leq \frac{\alpha}{2-\alpha}<1
$$

Let

$$
\beta=\sup \frac{\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)}{2-\phi\left(\mu\left(d\left(x_{n-1}, x_{n}\right)\right)\right)}
$$

[3]W.-S. Du,"Some new results and generalisations in metric fixed point theory," Nonlinear Analysis, vol.73,pp.1439-1466,2010.
[4]W.-S. Du," On coincidence point and fixed point theorems for nonlinear multivalued maps," Topology and its Applications, vol.159,pp.49-56,2012.
[5]I-J Lin and S-H Yang," Some existence and convergence theorem of best proximity point for new nonlinear cyclic maps" Int. Journal of Math.Analysis, vol 6,no 52,pp.2563-2578,2012
[6]K.Neammanee and A.Kaewkhao,"Fixed points and best proximity points for multivalued mapping satisfying cyclical condition," Int.J.of Mathematical sciences and Applications,vol.1,pp.1-9,2011.
[7]T. Suzuki,M.Kikkawa and C.Vetro," The existence of best proximity points in metric spaces with the property UC," Nonlinear Analysis,vol.71,pp. 2918-2926,2009.

Email*. dimrirc@gmail.com
Email**. psrsdm@gmail.com
Department of Mathematics, H.N.B.Garhwal University, Srinagar Garhwal

