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1. Introduction and Preliminaries
Let A and B be nonempty subsets of a metric
space (X,d).Consider a mapping T : A ∪ B →
A ∪ B,T is called a cyclic map if T(A)⊆ B and
T(B)⊆ A.x ∈ A is called a best proximity point
of T in A if d(x,Tx) = d(A,B) is satisfied,where
d(A,B) =inf{d(x, y) : x ∈ A, y ∈ B}.We denote
by H the Hausdorff metrie H(A,B) = max{sup
d(a,B) : a ∈ A, sup d(A, b) : b ∈ B} where d(a,
B) =inf{d(a, b) : b ∈ B}. In 2005,Elderd et al.[1]
proved the existence of a best proximity point for
relatively nonexpansive mappings using the no-
tion of proximal normal structure.In 2006,Eldred
and Veeramani [2] proved the following existence
theorem.

Definition 1.1. Let A and B be nonempty sub-
sets of a metric space (X,d). The cyclic ( on A
and B ) multivalued mapping T is said to be cyclic
contraction if there exists a constant k ∈ (0, 1)
such that

H(Tx, Ty) ≤ kd(x, y) + (1− k)d(A,B)

for all x ∈ A and y ∈ B

Theorem1.2[2]. Let A and B be nonempty closed
convex subsets of a uniformaly convex Banach
space.Suppose f : A ∪ B → A ∪ B is a cyclic
contraction,that is,f(A) ⊆ B and f(B) ⊆ A, and
there exists k ∈ (0, 1) such that

d(fx, fy) ≤ kd(x, y) + (1− k)d(A,B)

for every x ∈ A, y ∈ B
Then there exists a unique best proximity point
in A. Further, for each x ∈ A, {f 2nx} converges
to the best proximity point.

Definition1.3[3-4] A function φ : [0,∞)→ [0, 1)
is said to be an MT- function (or R-function) if
limsups→t+φ(s) < 1 for all t ∈ [0,∞).
It is obvious that if φ : [0,∞) → [0, 1) is a non-
decreasing function or a nonincreasing function,
then φ is an MT-function. So the set of MT-
functions is a quite rich class.
Very recently,Du [4] first proved some character-
izations of MT-functions.

Example1.4[4] Let φ : [0.∞)→ [0, 1) be defined
by

|x| =
{

sint
t

; if t ∈ (0, π
2
]

0; otherwise.

since lims→0+supφ(s) = 1, φ is not an MT-function.

Theorem1.5[4] Let φ : [0,∞)→ [0, 1) be a func-
tion.Then the following statements are equiva-
lent.
(a) φ is an MT-function.

(b) For each t ∈ [0,∞),there exist r
(1)
t ∈ [0, 1)
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and ε
(1)
t > 0 such that φ(s) ≤ r

(1)
t for all s ∈

(t, t+ ε
(1)
t ).

(c) For each t ∈ [0,∞), there exist r
(2)
t ∈ [0, 1)

and ε
(2)
t > 0 such that φ(s) ≤ r

(2)
t , for all s ∈

[t, t+ ε
(2)
t ].

(d) For each t ∈ [0,∞), there exist r
(3)
t ∈ [0, 1)

and ε
(3)
t > 0 such that φ(s) ≤ r

(3)
t , for all s ∈

[t, t+ ε
(3)
t ].

(e) For each t ∈ [0,∞),there exist r
(4)
t ∈ [0, 1)

and ε
(4)
t > 0 such that φ(s) ≤ r

(4)
t for all s ∈

(t, t+ ε
(4)
t ).

(f) For any nonincreasing sequence {xn}n∈N in
[0,∞),we have 0 ≤ supn∈Nφ(xn) ≤ 1.

(g) φ is a function of contractive factor ; that
is , for any strictly decreasing sequence {xn}n∈N
in[0,∞),we have 0 ≤ supn∈Nφ(xn) ≤ 1.

Definition1.6[6] Let A and B be nonempty sub-
sets of a metric space (X,d).Then (A,B) is said to
satisfy the property UC if the following holds:
If {xn} and {x′

n} are sequences in A and {yn}
is a sequence in B such that limn→∞d(xn, yn) =
d(A,B) and limn→∞d(x

′
n, yn) = d(A,B), then

limn→∞d(xn, x
′
n) = d(A,B).

Lemma1.7[5] Let A and B be nonempty subsets
of a metric space (X,d) with property UC and let
{xn} be a sequence in A.If there exists a sequence
{yn} in B such that limn→∞d(xn, yn) = d(A,B)
and limn→∞d(xn+1, yn) = d(A,B), then {xn} is a
Cauchy sequence.

2. Main Result

Theorem2.1 Let A and B be a nonempty sub-
sets of a metric space (X,d) such that (A,B) sat-
isfies the property UC and A is complete.Let F
and G are two (on A and B) multivalued map-
pings such that Fx⊆ B, for all x ∈ A and Gy⊆
A, for all y ∈ B.If there exists a nondecreasing
function µ : [0,∞) → [0, 1) and an MT-function
φ : [0,∞)→ [0, 1) such that

H(Fx,Gy) ≤ 1

2
φ(µ(d(x, y)))[d(x, Fx) + d(y,Gy)]+

[1− φ(µ(d(x, y)))]d(A,B) (1)

for all x ∈ A and y ∈ B, then F and G has com-
man best proximity point in A.

Proof. Fix x0 ∈ A.Let x1 ∈ Fx0 ⊆ B.There ex-
ists x2 ∈ Gx1 ⊆ A such that

d(x1, x2) ≤ d(x1, Gx1) + k

≤ h(Fx0, Gx1) + k

≤ H(Fx0, Gx1) + k

≤ 1

2
φ(µ(d(x0, x1)))[d(x0, Fx0) + d(x1, Gx1)]+

[1− φ(µ(d(x0, x1)))]d(A,B) + k

≤ 1

2
φ(µ(d(x0, x1)))[d(x0, x1) + d(x1, x2)]+

[1− φ(µ(d(x0, x1)))]d(A,B) + k

which implies

[1− 1

2
φ(µ(d(x0, x1)))]d(x1, x2) ≤ [1− 1

2
φ(µ(d(x0, x1)))]

d(x0, x1) + [1− φ(µ(d(x0, x1)))]d(A,B) + k (2)

From (2), we obtain

d(x1, x2) ≤
φ(µ(d(x0, x1)))

2− φ(µ(d(x0, x1)))
d(x0, x1)+

[1− φ(µ(d(x0, x1)))

2− φ(µ(d(x0, x1)))
]d(A,B) + k

From (1) again, we have

d(x2, x3) = H(Gx1, Fx2) + k

= H(Fx2, Gx1) + k

≤ 1

2
φ(µ(d(x2, x1)))[d(x2, Fx2)+

d(x1, Gx1)] + [1− φ(µ(d(x2, x1)))]

d(A,B) + k

=
1

2
φ(µ(d(x2, x1)))[d(x2, x3) + d(x1, x2)]

+ [1− φ(µ(d(x2, x1)))]d(A,B) + k
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which implies

[1− 1

2
φ(µ(d(x2, x1)))]d(x2, x3) ≤ [1− 1

2
φ(µ(d(x2, x1)))]

d(x1, x2)+

[1− φ(µ(d(x2, x1)))]

d(A,B) + k

and hence

d(x2, x3) ≤
φ(µ(d(x2, x1)))

2− φ(µ(d(x2, x1)))
d(x2, x1)+

[1− φ(µ(d(x2, x1)))

2− φ(µ(d(x2, x1)))
]d(A,B) + k

By induction, we have

d(xn, xn+1) ≤
φ(µ(d(xn−1, xn)))

2− φ(µ(d(xn−1, xn)))
d(xn−1, xn)

+[1− φ(µ(d(xn−1, xn)))

2− φ(µ(d(xn−1, xn)))
]d(A,B) + k (3)

Since φ is an MT-function, we obtain

0 ≤ supφ(µ(d(xn, xn+1))) < 1

Let α = supφ(µ(d(xn, xn+1))). So 0≤ α < 1.Since

φ(µ(d(xn, xn+1))) ≤ α (4)

Thus,

2− φ(µ(d(xn, xn+1))) ≥ 2− α, for all n ∈ N
(5)

Therefore, by (4) and (5), we get

φ(µ(d(xn−1, xn)))

2− φ(µ(d(xn−1, xn)))
≤ α

2− α
(6)

From (6),

0 ≤ sup
φ(µ(d(xn−1, xn)))

2− φ(µ(d(xn−1, xn)))
≤ α

2− α
< 1

Let

β = sup
φ(µ(d(xn−1, xn)))

2− φ(µ(d(xn−1, xn)))

Then β ∈ [0, 1) It follows from (3) that

d(xn, xn+1) ≤ βd(xn−1, xn) + (1− β)d(A,B) + k

≤ β2d(xn−2, xn−1) + (1− β2)d(A,B) + k2

≤ .......................................

≤ βnd(x0, x1) + (1− βn)d(A,B) + kn

Since β ∈ [0, 1), we have limn→∞β
n = 0. So the

last inequality implies

limn→∞d(xn, xn+1) = d(A,B)

This implies

limn→∞d(x2n, x2n+1) = d(A,B),

limn→∞d(x2n+2, x2n+1) = d(A,B)

Since x2n ∈ Gx2n−1 ⊆ A, x2n+2 ∈ Gx2n+1 ⊆ A
and x2n+1 ∈ Fx2n ⊆ B, by Lemma1.7,x2n is a
Cauchy sequence.By completeness of A,there ex-
ists z ∈ A such that limn→∞d(z, x2n) = 0. Since
d(A,B)≤ d(z, x2n+1) ≤ d(z, x2n)+d(x2n, x2n+1) ≤
d(A,B),we have limn→∞d(z, Fx2n) = d(A,B)
Since d(A,B)≤ d(x2n, Gz) ≤ d((A,B), we have
limn→∞d(z,Gz) = d(A,B).
Hence d(z,Fz) = d(z,Gz) = d(A,B)
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